WOW! sinyali, Bölüm 1: İnsanlar tarafından yapılmadı mı?

Big Ear'da Şafak, Ohio Eyalet Üniversitesi, http://bigear.org

15 Ağustos 1977 akşamı saat onu çeyrek geçe
Delaware'de hayatta bir kez yaşanabilecek bir olay gerçekleşti:

"Big Ear" radyo teleskobuna çok güçlü bir sinyal geldi. Bir yerden gelmiş gibi tüm özelliklere sahipti. dünya dışı akıllı kaynak.

OSU Big Ear radyo gözlemevi, Kuzey/Güney yönünde hizalandı. Parabolik yansıtıcı güneydedir.

O sırada teleskopta kimse yoktu. Alıcı ve teleskop bilgisayarı kendi işlerini kendi başlarına yapıyorlardı. Bu nedenle, sinyal aslında ilk olarak bir makine, on iki yıllık bir bilgisayar tarafından tespit edildi.

BİLGİ PARÇALARI
The IBM 1130 ilk olarak 1965 yılında inşa edilmişti. Bir şeye benziyordu ve öyle hissettiriyordu eski savaş gemisi. Sadece 1 megabayt hafızası vardı. Bu nedenle, radyo sinyalinin tek kaydı sonsuz kağıt üzerinde 6 haneli bir çıktıdır. Sinyalin ses kaydı yoktur. Bugün, gigabayt olmasa bile megabaytları ölçen eksiksiz bir ses kaydına sahip olurduk. Ancak o günlerde, kağıt üzerinde sadece altı karakter kayıt olarak yeterli olurdu.

Birkaç gün sonra Selectric yazıcısından çıkan bilgisayar çıktıları Big Ear teknisyeni Gene Mikesell tarafından paketlenerek Jerry Ehman'ın evine getirildi.

Yazdırmayı durdurmak için basın. Bir IBM 1130 yazıcısı, bu 1977'de Big Ear radyo teleskopunda kullanılan tipti.

ANALİZ
Jerry Ehman Ohio State Üniversitesi'nde SETI gönüllüsüydü. Birlikte Bob Dixon, Big Ear bilgisayarının yazılımını FORTRAN ve assembler'da yazmıştı.

19 Ağustos civarında Jerry, evindeki radyo teleskopundan gelen çıktıları analiz etmeye ve sıra dışı radyo imzaları aramaya başladı.

Kağıt yığınının birkaç sayfasını açınca, tuhaf bir sayı ve karakter dizisi gördü.

Şaşırmıştı. Jerry, kırmızı kalemle altı karakteri “6EQUJ5” vurguladıktan sonra, bilgisayar çıktısının sol kenarına karşılarına “Vay canına!” notunu yazdı.

Vay canına! sinyal çıktısı

Karakterler ve sayılar çok güçlü bir dar bant iletimi gösteriyordu. Görünüşe göre bu, uzaydaDar bantlı iletimler genellikle doğal olarak gerçekleşmez ve yapay kaynaklı olduğunun bir işaretidir.

Geleneksel olarak konuşursak, tüm yapay şeyler insanlar tarafından yapılır. Bunun nedeni, insan dili ve Cambridge Sözlüğü'nün "yapay"ı "insanlar tarafından yapılmış" olarak tanımlamasıdır. Bu tanımın revize edilmesi gerekebilir.

OPTİMUM KANAL
Vay canına! iletim, insan olmayan dünya dışı bir uygarlıktan gelen bir radyo sinyalinin tüm ayırt edici özelliklerine sahipti. 1959 makalesinde “Yıldızlararası İletişimleri Aramak,Giuseppe Cocconi ve Philip Morrison, 21 cm hidrojen frekansını kullanmanın SETI için mantıklı bir seçim olduğunu açıkladı.

Ve tam olarak Wow! sinyalinin frekansı buydu. Yay takımyıldızının bulunduğu gökyüzündeki yönden gelmişti. 

Big Ear radyo ve bilgisayar kulübesi.

Sayı kodlarını Wow'dan aktarırsak! radyo teleskobuna ulaşan 1420 mHz radyo ışınının artan ve azalan gücünü görebiliriz. Harflerin ve sayıların her biri, bir sonraki grafikte gösterildiği gibi, belirli bir sinyal yoğunluğuna karşılık gelir.

Sinyal yüzyıllardır iletiliyor olabilir ve daha önce kimse aramadığı için asla tespit edilemedi. Sinyal kaynağı gökyüzünde hareket etmedi. 72 saniye boyunca hareket eden tek şey, radyo alıcısı sinyal ışınına girip çıkarken Doğu'dan Batı'ya görkemli bir şekilde dönen Dünya'ydı.

Ve sonra sinyal kayboldu. Gitmiş. Sinyal, Big Ear'ün ikinci korna anteni tarafından tekrar alınacaktı. Ama artık orada değildi.

Yukarıdaki grafikte gördüğümüz sinyalin yükselişi ve düşüşü anten deseninden kaynaklanıyordu, sinyalin kendisi sabit güçte kaldı.

Aşağıdaki grafik, Wow! sinyalinin sağındaki radyo kaynağı olan “OV-221”deki benzer bir sinyal desenini göstermektedir. (OV-221 ayrıca şu şekilde de bilinir: MSH 19-203 (Mills Slee Hill Radyo Kaynakları)).

Bu geniş bant sürekliliğinde Wow! çok dar bant olduğu için sinyal görünmüyor.

Bugün OV-221'in Samanyolu galaksisinin merkezi olan Yay A*'ya karşılık gelip gelmediğini duymayı bekliyorum, ancak artık kimse eski radyo kaynağı tanımlamalarını bilmiyor gibi görünüyor.

Sonra Jerry Ehman, Wow'un bilgisayar çıktısını gösterdi! John Kraus ve Bob Dixon'a bir işaret verince, hemen bunun hakkında konuştular, spekülasyon yaptılar ve hipotezler ürettiler. John ve Bob hızla çeşitli olasılıkları araştırmaya başladılar.

Dr. John Kraus bir fizikçi ve Big Ear radyo teleskopunun tasarımcısıydı. Aslında birkaç tür radyo anteni icat etti.

Bob Dixon, Ohio Eyalet Üniversitesi radyo teleskopunda SETI'nin direktörüydü.

Bunlar birlikte, sinyalin bir uçak, gezegen, asteroit, kuyruklu yıldız, uydu, uzay aracı, yer tabanlı verici veya bilinen herhangi bir doğal kaynak olma olasılığını dışladılar.

Ancak, Wow! sinyalinin doğal olmadığı ve bilinen bir insan kaynaklı neden bulunamadığı ortaya çıkınca, bunun teknolojik bir uzaylı medeniyetinden gelmiş olabileceğinden şüphelenildi.

Sinyalin geldiği uzay bölgesine geri dönülerek tekrar bulunup bulunamayacağına bakılmasına karar verildi. Bilimsel yöntem, herhangi bir deneyin veya sonucun tekrarlanabilirliğini gerektirir.

Haftalar aylara, yıllar on yıllara dönüşürken dünyanın dört bir yanından gelen gökbilimciler, Wow! sinyalinin tespit edildiği uzay bölgesini aradılar.

Vay canına! sinyal bir daha asla bulunamadı.

Wow'un uzay bölgesi ile ilgili hesaplamalar! sinyal

The Planetary Society'den görüntü, lisans https://creativecommons.org/licenses/by-nc/3.0/

Vay canına! 72 saniye boyunca sinyal gözlendi. Bu süre içinde, aşağıdaki hesaplamalara göre 18 yay dakikasına eşdeğer bir uzay bölgesi tarandı:

24saat x 60 dakika = 1440 dakika/gün = 86400 saniye
360° / 86400 = 0.0041°/saniye
72 saniye = 0.3°

Yay dakikası (' simgesiyle gösterilir), bir derecenin 1/60'ına veya 60 yay saniyesine eşit bir açısal ölçümdür. Derece ölçümünü bir dakikalık yay ölçümüne dönüştürmek için açıyı dönüştürme oranıyla çarparız.

Yay dakikası cinsinden açı, derecelerin 60 ile çarpımına eşittir:
0.3 x 60 = 18 yay dakikası.

Dünya'dan görüldüğü gibi, Güneş ve Ay'ın her ikisinin de yaklaşık 30 yay dakikası açısal çapları vardır. Dolunayın ortalama görünür boyutu yaklaşık 31 yay dakikasıdır (veya 0.52°).

Başka bir deyişle, Wow! sinyali gökyüzünde Dünya'dan bakıldığında Güneş veya Ay'ın yaklaşık yarısı büyüklüğünde bir alanı kaplıyordu. Bu, astronomide oldukça büyük bir alandır.

Bu basit hesaplamaya dayanarak, Wow! sinyalinin nokta benzeri bir kaynaktan geldiğine kolayca katılamam. Bu bir sorun olabilir veya olmayabilir. Big Ear radyo teleskopunun çözünürlüğünün daha iyi olmadığı konusunda anlaşarak çözülebilir!

Vay canına'nın frekansı ve hızı! sinyal kaynağı

Hidrojen frekansını kullanan uzaylıların bunu Dünya'nın hareketine göre gezegenlerinin hareketini telafi edecek şekilde yaptıkları varsayılmaktadır. Aksi takdirde, hidrojenin kesin frekansı daha yüksek veya daha düşük olur.

Bu yüzden sinyalin kesin frekansına bakmak önemlidir.

Gözlemevinin yöneticisi John Kraus, 1420.3556 frekans değeri verdi. MHz onun içinde Carl Sagan için yazılmış 1994 özeti.

Jerry Ehman 1998'de 1420.4556±0.005 MHz değerini verdi. 

Bu değerin (50±5 kHz) üzerindedir. hidrojen hattı 1420.4058 MHz değeri.

Bu frekanslardan sadece biri doğru olabilir. Ehman'ın ve Kraus'un değerleri arasındaki farkın açıklaması, yeni bir osilatör 1450.4056 MHz frekansı için sipariş edilmişti.

Üniversitenin satın alma departmanı daha sonra bir yazım hatası sırayla ve 1450 yazdı.5056 yerine 1450 MHz.4056 MHz. Deneyde kullanılan yazılım daha sonra bu hatayı düzeltmek için yazılmıştır. Ehman, Wow!'un frekansını hesapladığında! sinyal, bu hatayı dikkate aldı.


Tüm hatalar hesaba katıldıktan sonra, 1420.4556 MHz'lik Doppler kayması, Wow! hızında hareket eden sinyal kaynağı 37,893 km / saat Dünya'ya doğru. Aşağıdaki hesaplamalar bu hıza nasıl ulaştığımı gösteriyor:

Wow'un Doppler kayması ile ilgili hesaplamalar! sinyal

Vay canına! sinyal 1420.4556 MHz'de tespit edildi. İlk önce frekansı dalga boyuna çevirmeliyiz. Dalga boyu, bir dalga tepesinin belirli bir zaman aralığında ne kadar yol kat ettiği, ışığın frekansı ve hızı tarafından verilir.

Frekans - dalga boyu hesaplayıcısı:
https://www.everythingrf.com/rf-calculators/frequency-to-wavelength

Vay frekansı! 1420.4556 MHz sinyali, (Δλ) 21.105373 cm'lik bir dalga boyuna eşittir. Bu, her dalga tepesi arasındaki mesafedir.

Hidrojenin varsayılan köken sinyalinin kesin frekansı 1420405751.768 Hz'dir ve bu da (λ) 21.106114054160 cm dalga boyuna eşdeğerdir. Vikipedi: https://en.wikipedia.org/wiki/Hydrogen_line

Doppler kayması delta lambda ve lambdadan gelen hız = 299 781 932.02409 m/sn. https://www.vcalc.com/wiki/sspickle/speed+from+delta+lambda+and+lambda

şimdi çıkarıyoruz
299 781 932.02409 m/sn
[Doppler, Wow'u değiştirdi! v = (Δλ/λ) * c]'den gelen sinyal hızı
-299 792 458 m/sn [ ışık hızı (c)]
______________________

10 526 m/sn = 37 893 km/s veya 10.526 km/sn.

Kaynak 1: Vaov! işaret İletim frekansı hidrojenden olsaydı, Dünya'ya 37 km/saat veya 893 mil/saat hızla yaklaşırdı.

Asteroitlerin ortalama hızı 18-20 km/s'dir, Wow! sinyalinin 10.52 km/s'lik hızına karşılık. Dünya'ya çarpan kuyrukluyıldızlar da genellikle 30 km/s'lik bir hızla daha hızlıdır.

1. bölümün sonu.

Şimdi WOW! Sinyali, Bölüm 2'yi okuyun:
Kanıtlar Bilinmeyen Bir Nesnenin Kökeninin Dünya'ya Doğru Hareket Ettiğini Gösteriyor


Bu hikayeyi ve daha fazlasını takip edin

https://contactproject.org
UAP'ler/UFO'lar ile telsiz teması kurma önerisi

Önceki | Next

Uzay Aracında Yapay Yerçekimine Sahip Olabilir miyiz?

Neden kimse yerçekimini simüle etmek için dönen uzay aracı inşa etmedi?

Resimde: 1950'lerden bir panayır gezintisi, ben buna GRAVITY DRUM diyorum.

Bütün bir uzay aracını döndürmek pahalıdır, ancak uzay istasyonlarındaki veya gemilerdeki küçük alanlar kolayca döndürülebilir.

Bu küçük alanlar, anlamlı ve sağlıklı yapay yerçekimi sağlayacak kadar büyük olabilir mi?

Fizik bilgimden, yerçekimi ve ivmenin aynı olduğunu hatırlıyorum.

Yanlış hatırlamıyorsam 1 g, saniyede 9.81 m/sn'lik bir ivmeye eşittir. Başka bir deyişle, sıfır yerçekiminde 10 g'ı simüle etmek için çevresi 1 metre olan bir tekerleğin saniyede bir kez döndürülmesi gerekir mi? Pek değil.

Ne yazık ki, bundan biraz daha karmaşık ve neyse ki çarkı bu kadar hızlı döndürmemize gerek yok. Bu bir bonus!

İşte Dünya yerçekimini simüle etmek için tekerlek boyutlarını ve dönüş oranlarını hesaplamak için birkaç kullanışlı hesap makinesi:

SpinCalc, yerçekimi, yarıçap ve dönüş hızını çözer,

Daire Hesaplayıcı, çap, yarıçap ve çevreyi çözer.

Çevresi 10 metre olan bir tekerleğin çapı 3.18 metre olacaktır. Bu, Dünya'da bile yapay yerçekimi deneyleri için kullanışlı bir boyut olacaktır.

Bununla vakit geçirmek rahat olur mu? 24 g'yi simüle etmek için tekerlek yaklaşık 1 RPM'de dönmelidir. On mürettebatı tutan 1 x 2 metrelik yataklara bölünebilir.

Bu nedenle, en azından dinlenme süreleri boyunca uzaylılar, normal yerçekiminin avantajına sahip olacaklardı. Astronotlar, biraz panayır sürüşü illüstrasyonunda olduğu gibi, ancak daha fazla mahremiyetle direksiyonun içinde yatıyorlar.

Bu kadar küçük Davul Yerçekimi üniteleri inşa etmek mümkün mü?
İnsan vücudu nasıl tepki verirdi? (Santrifüj ile Yapay Yerçekimi).

Sıfır yerçekiminin olumsuz etkilerinin gerçekten ciddi ve sayısız olduğunu biliyoruz. Günlük 2.5 saatlik koşu bandı egzersizi bile bu etkileri önlemek için yetersizdir:

  1. sıvı yeniden dağıtımı: Vücut sıvıları alt ekstremitelerden başa doğru kayar. Bu, aşağıda açıklanan sorunların çoğunu hızlandırır.
  2. sıvı kaybı: Beyin, sefalik bölgedeki sıvı artışını toplam sıvı hacmindeki artış olarak yorumlar. Yanıt olarak, boşaltım mekanizmalarını harekete geçirir.
  3. elektrolit dengesizlikleri: Sıvı dağılımındaki değişiklikler potasyum ve sodyumda dengesizliklere yol açar ve otonom düzenleyici sistemi bozar.
  4. kardiyovasküler değişiklikler: Göğüs bölgesindeki sıvı artışı, başlangıçta sol ventrikül hacminde ve kalp debisinde artışlara yol açar. Vücut yeni bir denge aradığında sıvı atılır, sol ventrikül küçülür ve kalp debisi azalır.
  5. kırmızı kan hücresi kaybı: Amerikan ve Sovyet uçuşlarından önce ve sonra alınan kan örnekleri, 0.5 litreye kadar kırmızı kan hücresi kaybına işaret etti.
  6. kas hasarı: Kaslar kullanım eksikliğinden atrofi. Kasılma proteinleri kaybolur ve doku küçülür. Kas kaybına kas tipinde bir değişiklik eşlik edebilir.
  7. kemik hasarı: Mikro yerçekiminde kemikler üzerindeki mekanik talepler büyük ölçüde azaldığından, kemikler esasen çözülür.
  8. hiperkalsemi: Sıvı kaybı ve kemik demineralizasyonu kandaki kalsiyum konsantrasyonunu artırmak için bir araya gelir.
  9. bağışıklık sistemi değişiklikleri: T-hücre fonksiyonunun kaybı, vücudun kansere karşı direncini engelleyebilir - yüksek radyasyonlu uzay ortamı tarafından şiddetlenen bir tehlike.
  10. tıbbi prosedürlere müdahale: Bakteriyel hücre zarları daha kalın ve daha az geçirgen hale gelerek antibiyotiklerin etkinliğini azaltır.
  11. vertigo ve uzaysal oryantasyon bozukluğu: Sabit bir yerçekimi referansı olmadan, mürettebat üyeleri dikeylik algılarında keyfi ve beklenmedik değişiklikler yaşarlar.
  12. uzay adaptasyon sendromu: Tüm astronotların ve kozmonotların yaklaşık yarısı etkilenir. Semptomlar bulantı, kusma, iştahsızlık, baş ağrısı, halsizlik, uyuşukluk, uyuşukluk, solgunluk ve terlemeyi içerir.
  13. egzersiz kapasitesi kaybı: Bu, motivasyonun azalmasına bağlı olabileceği gibi fizyolojik değişikliklere de bağlı olabilir.
  14. bozulmuş koku ve tat duyusu: Kafadaki sıvıların artması, soğuk algınlığına benzer bir tıkanıklığa neden olur.
  15. kilo kaybı: Sıvı kaybı, egzersiz eksikliği ve iştah azalması kilo kaybına neden olur. Uzay yolcuları yeterince yemek yememe eğilimindedir.
  16. şişkinlik: Sindirim gazı ağza doğru "yükselemez" ve sindirim sisteminin diğer ucundan "büyük hacim ve sıklıkta çok etkili bir şekilde" geçme olasılığı daha yüksektir.
  17. yüz distorsiyonu: Yüz şişiyor ve özellikle yandan veya baş aşağı bakıldığında ifadelerin okunması zorlaşıyor.
  18. duruş ve boydaki değişiklikler: Nötr vücut duruşu cenin pozisyonuna yaklaşır. Omurga uzama eğilimindedir.
  19. koordinasyondaki değişiklikler: Dünya-normal koordinasyonu bilinçsizce kendi ağırlığını telafi eder. Ağırlıksızlıkta çok "yüksek" olma eğilimi vardır.

Sıfır yerçekiminin bu olumsuz etkileriyle karşılaştırıldığında, 1977'den Graybiel adlı bir psikolog tarafından, bir insanın bir tükürük gibi (bir tükürük gibi) burada kendi ekseni etrafında döndürülmesinin etkileri üzerine bazı çalışmalar var. https://psycnet.apa.org/record/1980-22567-001).

GRAYBIEL DÖNÜŞ KONFOR BÖLGELERİ

Graybiel şu sonuca vardı: 
1.0 RPM: oldukça hassas denekler bile semptomsuzdu ya da neredeyse
3.0 RPM: denekler semptomlar yaşadı 
5.4 RPM, yalnızca düşük duyarlılığa sahip denekler iyi performans gösterdi
10 RPM, adaptasyon zorlu ama ilginç bir problem sundu. Hava tutması öyküsü olmayan pilotlar bile on iki günlük bir süre içinde tam olarak uyum sağlayamadı.

Graybiel'in bahsettiği “adaptasyon”, vücut döndürüldükten sonra rotasyonun yokluğuna alışmaktır.

Hepimizin çocukluktan hatırladığımız gibi hissettirdiği şey.:

parmak uçlarında dönmek

Bir insanı Dünya yerçekiminin etkisi altında yatay olarak kendi ekseni etrafında döndürmenin, bir insanın ağırlıksız uzayda yapay bir yerçekimi tamburunda yaşayabileceğinden çok uzak olduğunu söylemeliyim.

Graybiel'in dönme konfor bölgelerinin, merkezcil kuvvet tarafından yapay yerçekimi ile kesinlikle hiçbir ilgisi olmadığını söyleyecek kadar ileri giderdim. “Z ekseni etrafında dünya-yatay dönüşü takiben somatosensoriyel hareket sonrası etki” makalesinde kanıtladığı tek şey, birini hızlı bir şekilde döndürmenin sonraki etkisinin kulağın vestibüler sisteminin oryantasyonunun bozulması, baş dönmesine, yani vertigoya yol açmasıdır.

Ama bakalım bu Graybiel'in konfor bölgesi rakamları uygulanabilecek mi?
SpaceX Mars roketinin çapı 9 metre olacak. Bu roketin sınırları içinde uzay yolcularının uyuması veya dinlenmesi için rahat bir yaşam alanı yaratmak mümkün olabilir mi?

9 metrelik bir tamburun 14 g'yi simüle etmek için 1 RPM'de veya Dünya yerçekiminin 8/1'ünü elde etmek için 3 RPM'de dönmesi gerekir. Graybiel'in bulguları, SpaceX Mars roketinde mevcut alanın çok küçük olacağını gösterecekti.

Ancak, vücut yatarken kendi etrafında ve tek bir düzlemde dönmeyen yerçekiminin (merkezcil kuvvet) kendi ekseni etrafında hızla dönmesinden daha rahat olacağına inanıyorum.

In Davul Yerçekimi Yatak Üniteleri baştan ayağa hızlanma gradyanı olmayacaktı.

DRUM AĞIRLIK YATAK ÜNİTELERİ
Tambur yerçekimi yatak üniteleri, daha fazla doğal yerçekimi sağlamak için ister transit, ister yörüngede veya Ay, Mars veya asteroitler üzerinde olsun, bir uzay aracına veya uzay istasyonuna ek modül olarak tasarlanmıştır.

Bu konseptin prototipleri yapıldı mı?

Belli bir şekilde: Evet! Bu gönderideki ilk resim, 1950'lerden bir fuar alanı cazibesi.

İnsanlık 50'lerde yapay yerçekiminin tadını çıkarmanın ne kadar kolay ve eğlenceli olduğunu gerçekten unuttu mu? Görünüşe göre fuar alanı ziyaretçileri kendilerini gönüllü olarak deneyime maruz bıraktılar ve bundan keyif aldılar.

“Rotor Sürüşü”

Bunun gibi basit yerçekimi cihazları, cihaz ince ayar yapıldıktan sonra uzay yolcularının sağlıklarını korumalarına yardımcı olabilir.

DAHA BÜYÜK BİR MODEL

Dönen tekerlekli uzay istasyonu — Wikipedia

İşte 1952: A Space Odyssey filminde kullanılan 2001 tarihli von Braun tekerleği üzerindeki hesaplamalar:

ile dönen bir tekerlek tasavvur ettiler. 76 metre (250 fit) çap. 3 katlı tekerlek, yapay üçte bir yerçekimi sağlamak için 3 RPM'de dönecektir. 80 kişilik bir mürettebat olması öngörülmüştür.

70 yılı hızlı ileri sar (1950'lerden bu yana pek bir şey olmadı):

SAHC İNSAN SANTRİFÜJ
SAHC insan santrifüjü, yaklaşık 2020'de testlere ve operasyonlara başladı. Ağırlıksızlığın etkilerine karşı koymak için yapay yerçekiminin astronotlar ve sağlıkları üzerindeki tolere edilebilirliğini ve kullanımını araştırmak. Bu kadar uzun süren ne?

Makine 5.6 metre çapındadır. 
SpaceX Mars roketini yerleştirmek için yeterince küçük olurdu. Ama birkaç koltuğa daha ihtiyacı var.

https://www.dlr.de/me/en/desktopdefault.aspx/tabid-1961/2779_read-14523/

Yalancı test kişisi ile santrifüj

-

ESA tarafından sağlanan Köln'deki Kısa Kollu İnsan Santrifüjü (SAHC) ile tıp ve insan fizyolojisinde temel araştırmaları sağlamak için yapay yerçekimi oluşturulacak. Ana odak noktası, ağırlıksızlıktan kaynaklanan tıbbi riskler için yapay yerçekimine dayalı karşı önlem yöntemlerini test etmek için örneğin yatak istirahati çalışmalarını genişletme olasılığı üzerindedir.

Teknik veriler:

Maks. dış çevre yarıçapı: 2,8 m
Maks. toplam yük: 550 kg

Maks. merkezkaç ivmesi
(ayak seviyesi, denek yüksekliği 185 cm): 4.5 g
Maks. santrifüj rotorunun devri
(yazılım sınırı): 39 rpm

Bilimsel uygulamalar

  • Yapay Yerçekimi vb. kullanılarak astronotların nöromüsküler ve iskelet dejenerasyonu için etkili karşı önlemlerin geliştirilmesi…

Bu, İletişim Projesi için Erich Habich-Traut tarafından yazılmış bir makaledir,
https://contactproject.org

Önceki | Sonraki